Bitcoin

The world’s first decentralized digital currency

Meni Rosenfeld
Bitcoil
Bitcoin adoption (Jan 2013)

- Bitcoin “Market capitalization”: $200M
- Users: 100K
- Bitcoin-accepting businesses: 2000, including
 - Wordpress.com
 - Freelancers, server hosting, software, books, clothing, video games, electronics, groceries, car accessories, ad networks, restaurants...
- Accepting donations: FSF, Wikileaks, Internet Archive, xkcd...
- Academic research: WIS (Adi Shamir), Microsoft, Cornell, ETH Zurich...
- Reports: FBI, ECB...
Bitcoin is a *currency*

- “Money can be exchanged for goods and services”
- Currency facilitates the trade of one good for another
- A good currency must be:
 - Scarce, portable, durable, fungible, divisible, current
 - Does *not* need to have “intrinsic” value
- The value of each unit of currency is determined by equilibrium between supply and demand
 - Total value of a currency is proportional to total trade using it
 - Value per unit = Total value / Number of units
Bitcoin is *digital*

- Ownership of bitcoins is digital information
- Typically used with a computer and the internet
- Based on cryptography
Bitcoin is *decentralized*

- There is no company “Bitcoin Ltd.”
- There is no central issuer or controller
- Based on a public protocol
- Run by a p2p network of computers running FLOSS
- Multiple parties are each “doing their own thing”
 - Just like Linux!
Bitcoin is the first!

- Plenty of physical currencies
 - Gold, silver, seashells, rocks...

- Plenty of centralized digital currencies
 - PayPal, WebMoney, e-gold, DigiCash, LR, WoW gold, SLL, EVE isk...

- Bitcoin is the world’s first decentralized digital currency

- Invented in 2008 by “Satoshi Nakamoto” (pseudonym)
How to use?

- Install open-source client software

- Software generates “addresses”, which are like bank account numbers (e.g. 1BBsbEq8Q29JpQr4jyGjPof7F7uphqyUCQ)

- To receive bitcoins, let the sender know your address

- To send bitcoins, specify receiving address and amount, and click “send”
How to use?

![Bitcoin Wallet Interface]

- **Pay To:** Enter a Bitcoin address (e.g., LN17iagBjgTHD1UX7wLCEz0g3rJDKSL)
- **Label:** Enter a label for this address to add it to your address book
- **Amount:** Enter the amount of Bitcoin to send

4/2/2013

Written by Meni Rosenfeld
Why?

- No need for 3rd party
- Easy to send and receive money
- Almost no fees
- No single point of failure
- Secure
- Limited supply – no built-in long-term monetary and price inflation
- No chargebacks
- International
- Usable by weak/small countries
- Pseudonymous
- Public ledger
- Advanced applications
Quantitative data

- No more than 21 million bitcoins will ever exist
- So far about 11 million bitcoins have been created
- Each bitcoin is currently worth roughly $20
 - Started at roughly half a cent, all-time high $32
- Bitcoin amounts can be specified with 8 decimal places
 - 2.1 quadrillion atomic units
- Monetary inflation rate is stepwise decaying exponential
 - Creation rate is cut in half roughly every 4 years
Inflation schedule

Total bitcoins in circulation over time (millions)
Analogies

• Bitcoin is to money what...
 • Email is to communication
 • The WWW is to publishing
 • Social networks are to socializing

• Bitcoin is an open source currency
 • You can look under the hood
 • You can hack it (but you can’t crack it)

• Bitcoin is a startup currency
The Bitcoin Blockchain

How does Bitcoin work?

Meni Rosenfeld
Bitcoil
Public key cryptography

- Every user has a private key and a public key (numbers)
 - Everyone knows user’s public key
 - Private key is the user’s secret, never shared with anyone

- Public key is uniquely determined by the private key

- Virtually impossible to compute private key from public key

- Can be used for encryption and digital signatures
Digital signatures

- User wants to send a message and prove that he wrote it

- Takes message and private key and performs a computation to create a signature

- Recipient compares the signature against the message and the user’s known public key

- Only the user who possesses the private key can sign messages, does not need to share the private key

- Examples: RSA, ECDSA
Hash functions

- Example: SHA-256

- Takes arbitrary data and transforms it to a 256-bit number
 - Integer from 0 to $115792089237316195423570985008687907853269984665640564039457584007913129639935$
 - Usually expressed as hexadecimal string
 - $IG46Us2X7EKc4Cn3 \Rightarrow 6fe47cd49392e511dac5ef335aaf3b...$
 - $IG46Us2X7EKc4Cn4 \Rightarrow 3a9ee39ea060e2f94d5f9e1346430a...$
 - Even the tiniest change can alter the hash in ways you can’t imagine

- The hash of random data is essentially a random number
 - If highest possible hash is M, has probability X/M to be less than X
Bitcoin system components

- A transaction structure for specifying and changing ownership
- A p2p network for propagating, verifying and storing transaction data
- A proof-of-work system (hashing, “mining”) for:
 - Synchronizing transactions
 - Determining initial distribution of coins
Coins

- The fundamental building block of Bitcoin is a “coin”
- A coin is characterized by:
 - Unique ID
 - Quantity (denomination) – arbitrary number with 8 decimal places
 - Owner
Coins can be split and merged

If Alice wants to send bitcoins to Bob, she will merge some of her coins and split the result between her and Bob
Transactions

- The owner of a coin is identified by an “address”
- Each address is associated with a private key
- To use a coin, the owner must provide a digital signature with the associated private key (ECDSA)
- The process where coins are merged and split is called a “transaction”
 - Used to move bitcoins from one owner to another
Transaction structure

Transaction

Tx hash - c371a3cb28425169588078d9639a4077c8b706f6566b49ea40b18f6f4a7d

Input #1
Output ref.; signature

Input #2
Output ref.; signature

Input #3
Output ref.; signature

Output #1
Receiving address; amount

Output #2
Receiving address; amount
Transaction structure

- A transaction can have any number of inputs and outputs
- An output specifies a receiving address and amount
- An input references a previous unspent output
- The total value of all inputs must be at least the total value of all outputs
- The transaction is identified by a hash of its data
- The hash must be signed by the private key corresponding to every input address
- An address is a hash of an ECDSA public key
- More generally, an output specifies a script with the conditions to allow spending it
The Network
Problem: Double spending

- Using the same output (“coin”) to pay 2 different recipients
 - No agreement on who is the “true” recipient
 - One recipient will be out of his coins (presumably after providing some product)
 - Some way to determine order of transactions is needed

- Traditional solution: Central authority

- Naïve decentralized solutions have vulnerabilities

- The first working decentralized solution is the blockchain
Tentative solution

- Suppose there was just one coin
- Two conflicting transactions:
 - Only one transaction will be accepted
 - Doesn’t matter which one
 - As long as everyone agrees and it won’t change
Tentative solution

Each computer in the network:
- Chooses the transaction it thinks is correct
- Takes the transaction hash and concatenates random data
- Computes the hash of the result
- If hash is less than M/D, publish the result (probability $1/D$)

$(tx\ hash, \text{c5145e94}) \Rightarrow 0000bbe9affcf9f93b635...$
- Repeat

Each published result is a confirmation for the transaction
- n confirmations prove that on average nD hashes have been computed – by nodes agreeing with this transaction
Tentative solution

- The transaction with more confirmations is considered valid
- A more widely accepted tx will get new confirmations faster
- Eventually all nodes will converge on one of the transactions
 - And continue adding more confirmations
- To switch to the other transaction, Mallory needs to compute hashes faster than everyone else combined
Solution: The blockchain

- Transactions are grouped into blocks
- Blocks are confirmed with proof of work
- A transaction is considered final if it is included in a confirmed block
- Each block references a previous block to form a chain
- In case of conflict, the transaction with more compute power spent on confirmation wins
- Attacks require having more compute power than the rest of the network
The Blockchain

Block #208364:
00000000000004dbfeced47f2b527540791bc1663bdac2bed04510fb236451

Header
Prev. block hash: ...e3a23
Nonce: 1165787096
MetaData
Merkle Root: e3b996b75d4f90d1f38bdc7202072b6c6a996b1e49d7f4056b4a8279ab05e

Transactions:
Tx
Tx
Tx
Tx
Tx
Tx
Tx
Tx
Block structure

- Transactions are organized in a Merkle tree with a resulting root hash

- The block header consists of the Merkle root, the hash of the previous block, other metadata, and a nonce

- The block is identified by the SHA-256 hash of its header

- A block is valid only if its hash is lower than the target
Proof of work

- A block with given data and nonce has a very low probability of being valid.
- Miners try different nonces and compute the resulting hash (billions of tries per second) until they match the target, and release the resulting block.
- The existence of a block which includes a transaction proves that computational work has been done by a node which considers this transaction valid.
- Each block references the previous one. Each transaction gets increasingly more powerful proof of work.
- In case of competing branches, the one with the most proof of work is selected.
Proof of work

- A transaction “buried” under several blocks is very hard to revert mistakenly or maliciously.
- Reverting a transaction requires catching up with the computation of the honest network, which is unlikely without greater hashrate.
- Any change to a transaction invalidates all proof of work.
- Hash target is adjusted every 2016 blocks (roughly 2 weeks) so that on average one block is found every 10 minutes.
Creation of coins

- Every block is allowed one special “generation transaction”
- A generation transaction has a single special input, and any number of outputs
- Value of input: New coins + tx fees
- New coins: \(50 \cdot 2^{-\left[\frac{H}{2^{10000}}\right]}\) (starts at 50 BTC per block and halves roughly once every 4 years)
- Incentivizes securing the network by hashing
- Robust way to determine initial distribution
Questions?
Thank you

- Meni Rosenfeld
- meni@bitcoil.co.il
- https://bitcoil.co.il
- 1DdrvajpK221W9dTz05cLoxMnaxu859QN6